Variable Fusion for Bayesian Linear Regression via Spike-and-slab Priors

Shengyi Wu, Kaito Shimamura, Kohei Yoshikawa, Kazuaki Murayama, Shuichi Kawano

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

In linear regression models, fusion of coefficients is used to identify predictors having similar relationships with a response. This is called variable fusion. This paper presents a novel variable fusion method in terms of Bayesian linear regression models. We focus on hierarchical Bayesian models based on a spike-and-slab prior approach. A spike-and-slab prior is tailored to perform variable fusion. To obtain estimates of the parameters, we develop a Gibbs sampler for the parameters. Simulation studies and a real data analysis show that our proposed method achieves better performance than previous methods.

本文言語英語
ホスト出版物のタイトルIntelligent Decision Technologies - Proceedings of the 13th KES-IDT 2021 Conference
編集者Ireneusz Czarnowski, Robert J. Howlett, Lakhmi C. Jain
出版社Springer Science and Business Media Deutschland GmbH
ページ491-501
ページ数11
ISBN(印刷版)9789811627644
DOI
出版ステータス出版済み - 2021
外部発表はい
イベント13th International KES Conference on Intelligent Decision Technologies, KES-IDT 2021 - Virtual, Online
継続期間: 6月 14 20216月 16 2021

出版物シリーズ

名前Smart Innovation, Systems and Technologies
238
ISSN(印刷版)2190-3018
ISSN(電子版)2190-3026

会議

会議13th International KES Conference on Intelligent Decision Technologies, KES-IDT 2021
CityVirtual, Online
Period6/14/216/16/21

!!!All Science Journal Classification (ASJC) codes

  • 決定科学一般
  • コンピュータサイエンス一般

フィンガープリント

「Variable Fusion for Bayesian Linear Regression via Spike-and-slab Priors」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル