抄録
For an arbitrary complex number a≠ 0 we consider the distribution of values of the Riemann zeta-function ζ at the a-points of the function Δ which appears in the functional equation ζ(s) = Δ (s) ζ(1 - s). These a-points δa are clustered around the critical line 1 / 2 + iR which happens to be a Julia line for the essential singularity of ζ at infinity. We observe a remarkable average behaviour for the sequence of values ζ(δa).
本文言語 | 英語 |
---|---|
ページ(範囲) | 389-401 |
ページ数 | 13 |
ジャーナル | Computational Methods and Function Theory |
巻 | 20 |
号 | 3-4 |
DOI | |
出版ステータス | 出版済み - 11月 2020 |
!!!All Science Journal Classification (ASJC) codes
- 分析
- 計算理論と計算数学
- 応用数学