Typical ranks of m × n × (m − 1)n tensors with 3 ≤ m ≤ n over the real number field

Toshio Sumi, Mitsuhiro Miyazaki, Toshio Sakata

研究成果: ジャーナルへの寄稿学術誌査読

2 被引用数 (Scopus)

抄録

Let (Formula presented.). We study typical ranks of (Formula presented.) tensors over the real number field. Let (Formula presented.) be the Hurwitz–Radon function defined as (Formula presented.) for nonnegative integers (Formula presented.) such that (Formula presented.) and (Formula presented.). If (Formula presented.), then the set of (Formula presented.) tensors has two typical ranks (Formula presented.). In this paper, we show that the converse is also true: if (Formula presented.), then the set of (Formula presented.) tensors has only one typical rank (Formula presented.).

本文言語英語
ページ(範囲)940-955
ページ数16
ジャーナルLinear and Multilinear Algebra
63
5
DOI
出版ステータス出版済み - 5月 4 2015

!!!All Science Journal Classification (ASJC) codes

  • 代数と数論

フィンガープリント

「Typical ranks of m × n × (m − 1)n tensors with 3 ≤ m ≤ n over the real number field」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル