Trichotomy for integer linear systems based on their sign patterns

Kei Kimura, Kazuhisa Makino

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

In this paper, we consider solving the integer linear systems, i.e., given a matrix A ∈ Rm×n, a vector b ∈ Rm, and a positive integer d, to compute an integer vector x ∈ Dn such that Ax ≥ b, where m and n denote positive integers, R denotes the set of reals, and D = {0,1,⋯, d - 1}. The problem is one of the most fundamental NP-hard problems in computer science. For the problem, we propose a complexity index η which is based only on the sign pattern of A. For a real γ, let ILS=(γ) denote the family of the problem instances I with η(I) = γ. We then show the following trichotomy: ILS =(γ) is linearly solvable, if γ < 1, ILS =(γ) is weakly NP-hard and pseudo-polynomially solvable, if γ = 1, and ILS=(γ) is strongly NP-hard, if γ > 1. This, for example, includes the existing results that quadratic systems and Horn systems can be solved in pseudo-polynomial time.

本文言語英語
ホスト出版物のタイトル29th International Symposium on Theoretical Aspects of Computer Science, STACS 2012
ページ613-623
ページ数11
DOI
出版ステータス出版済み - 2012
外部発表はい
イベント29th International Symposium on Theoretical Aspects of Computer Science, STACS 2012 - Paris, フランス
継続期間: 2月 29 20123月 3 2012

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
14
ISSN(印刷版)1868-8969

会議

会議29th International Symposium on Theoretical Aspects of Computer Science, STACS 2012
国/地域フランス
CityParis
Period2/29/123/3/12

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア

フィンガープリント

「Trichotomy for integer linear systems based on their sign patterns」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル