The Smallest Grammar Problem Revisited

Hideo Bannai, Momoko Hirayama, Danny Hucke, Shunsuke Inenaga, Artur Jez, Markus Lohrey, Carl Philipp Reh

研究成果: ジャーナルへの寄稿学術誌査読

2 被引用数 (Scopus)

抄録

In a seminal paper, Charikar et al. derive upper and lower bounds on the approximation ratios for several grammar-based compressors, but in all cases there is a gap between the lower and upper bound. Here the gaps for LZ78 and BISECTION are closed by showing that the approximation ratio of LZ78 is $\Theta ((\text {n}/\log \text {n})^{2/3})$ , whereas the approximation ratio of BISECTION is $\Theta (\sqrt {\text {n}/\log \text {n}})$. In addition, the lower bound for RePair is improved from $\Omega (\sqrt {\log \text {n}})$ to $\Omega (\log \text {n}/\log \log \text {n})$. Finally, results of Arpe and Reischuk relating grammar-based compression for arbitrary alphabets and binary alphabets are improved.

本文言語英語
論文番号9259056
ページ(範囲)317-328
ページ数12
ジャーナルIEEE Transactions on Information Theory
67
1
DOI
出版ステータス出版済み - 1月 2021

!!!All Science Journal Classification (ASJC) codes

  • 情報システム
  • コンピュータ サイエンスの応用
  • 図書館情報学

フィンガープリント

「The Smallest Grammar Problem Revisited」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル