TY - JOUR
T1 - The evolving genomic landscape of esophageal squamous cell carcinoma under chemoradiotherapy
AU - Hirata, Hidenari
AU - Niida, Atsushi
AU - Kakiuchi, Nobuyuki
AU - Uchi, Ryutaro
AU - Sugimachi, Keishi
AU - Masuda, Takaaki
AU - Saito, Tomoko
AU - Kageyama, Shun Ichiro
AU - Motomura, Yushi
AU - Ito, Shuhei
AU - Yoshitake, Tadamasa
AU - Tsurumaru, Daisuke
AU - Nishimuta, Yusuke
AU - Yokoyama, Akira
AU - Hasegawa, Takanori
AU - Chiba, Kenichi
AU - Shiraishi, Yuichi
AU - Du, Junyan
AU - Miura, Fumihito
AU - Morita, Masaru
AU - Toh, Yasushi
AU - Hirakawa, Masakazu
AU - Shioyama, Yoshiyuki
AU - Ito, Takashi
AU - Akimoto, Tetsuo
AU - Miyano, Satoru
AU - Shibata, Tatsuhiro
AU - Mori, Masaki
AU - Suzuki, Yutaka
AU - Ogawa, Seishi
AU - Ishigami, Kousei
AU - Mimori, Koshi
N1 - Publisher Copyright:
© 2021 American Association for Cancer Research
PY - 2021/10/1
Y1 - 2021/10/1
N2 - Esophageal squamous cell carcinoma (ESCC) often recurs after chemoradiotherapy, and the prognosis of ESCC after chemoradiotherapy has not improved over the past few decades. The mutation process in chemoradiotherapy-resistant clones and the functional relevance of genetic alterations remain unclear. To address these problems, we performed whole-exome sequencing of 52 tumor samples from 33 patients with ESCC who received radiotherapy combined with 5-fluorouracil/platinum. In multiregion analyses of pretreatment and locally recurrent lesions from five cases, most driver gene-altered clones remained under chemoradiotherapy selection pressure, while few driver gene alterations were acquired at recurrence. The mutation signatures of recurrent ESCC, including increased deletion frequency and platinum dose-dependent base substitution signatures, were substantially different from those of primary ESCC and reflected the iatrogenic impacts of chemoradiotherapy. Single-region analysis of 28 pretreatment tumors indicated that focal copy-number gain at the MYC locus was significantly associated with poor progression-free survival and overall survival after chemoradiotherapy. MYC gain remained throughout the chemoradiotherapy course and potentially contributes to intrinsic resistance to chemoradiotherapy. Consistent with these findings, MYC copy number and mRNA and protein levels in ESCC cell lines correlated positively with resistance to radiotherapy, and MYC knockdown improved sensitivity to radiotherapy. Overall, these data characterize the clonal evolution process induced by chemoradiotherapy and clinically relevant associations for genetic alterations in ESCC. These findings increase our understanding of therapeutic resistance and support the rationale for precision chemoradiotherapy.
AB - Esophageal squamous cell carcinoma (ESCC) often recurs after chemoradiotherapy, and the prognosis of ESCC after chemoradiotherapy has not improved over the past few decades. The mutation process in chemoradiotherapy-resistant clones and the functional relevance of genetic alterations remain unclear. To address these problems, we performed whole-exome sequencing of 52 tumor samples from 33 patients with ESCC who received radiotherapy combined with 5-fluorouracil/platinum. In multiregion analyses of pretreatment and locally recurrent lesions from five cases, most driver gene-altered clones remained under chemoradiotherapy selection pressure, while few driver gene alterations were acquired at recurrence. The mutation signatures of recurrent ESCC, including increased deletion frequency and platinum dose-dependent base substitution signatures, were substantially different from those of primary ESCC and reflected the iatrogenic impacts of chemoradiotherapy. Single-region analysis of 28 pretreatment tumors indicated that focal copy-number gain at the MYC locus was significantly associated with poor progression-free survival and overall survival after chemoradiotherapy. MYC gain remained throughout the chemoradiotherapy course and potentially contributes to intrinsic resistance to chemoradiotherapy. Consistent with these findings, MYC copy number and mRNA and protein levels in ESCC cell lines correlated positively with resistance to radiotherapy, and MYC knockdown improved sensitivity to radiotherapy. Overall, these data characterize the clonal evolution process induced by chemoradiotherapy and clinically relevant associations for genetic alterations in ESCC. These findings increase our understanding of therapeutic resistance and support the rationale for precision chemoradiotherapy.
UR - http://www.scopus.com/inward/record.url?scp=85117023080&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85117023080&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-21-0653
DO - 10.1158/0008-5472.CAN-21-0653
M3 - Article
C2 - 34413060
AN - SCOPUS:85117023080
SN - 0008-5472
VL - 81
SP - 4926
EP - 4938
JO - Cancer Research
JF - Cancer Research
IS - 19
ER -