Temporal network change detection using network centralities

Yoshitaro Yonamoto, Kai Morino, Kenji Yamanishi

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

3 被引用数 (Scopus)

抄録

In this paper, we propose a novel change detection method for temporal networks. In usual change detection algorithms, change scores are generated from an observed time series. When this change score reaches a threshold, an alert is raised to declare the change. Our method aggregates these change scores and alerts based on network centralities. Many types of changes in a network can be discovered from changes to the network structure. Thus, nodes and links should be monitored in order to recognize changes. However, it is difficult to focus on the appropriate nodes and links when there is little information regarding the dataset. Network centrality such as PageRank measures the importance of nodes in a network based on certain criteria. Therefore, it is natural to apply network centralities in order to improve the accuracy of change detection methods. Our analysis reveals how and when network centrality works well in terms of change detection. Based on this understanding, we propose an aggregating algorithm that emphasizes the appropriate network centralities. Our evaluation of the proposed aggregation algorithm showed highly accurate predictions for an artificial dataset and two real datasets. Our method contributes to extending the field of change detection in temporal networks by utilizing network centralities.

本文言語英語
ホスト出版物のタイトルProceedings - 3rd IEEE International Conference on Data Science and Advanced Analytics, DSAA 2016
出版社Institute of Electrical and Electronics Engineers Inc.
ページ51-60
ページ数10
ISBN(電子版)9781509052066
DOI
出版ステータス出版済み - 12月 22 2016
外部発表はい
イベント3rd IEEE International Conference on Data Science and Advanced Analytics, DSAA 2016 - Montreal, カナダ
継続期間: 10月 17 201610月 19 2016

出版物シリーズ

名前Proceedings - 3rd IEEE International Conference on Data Science and Advanced Analytics, DSAA 2016

会議

会議3rd IEEE International Conference on Data Science and Advanced Analytics, DSAA 2016
国/地域カナダ
CityMontreal
Period10/17/1610/19/16

!!!All Science Journal Classification (ASJC) codes

  • 情報システム
  • 情報システムおよび情報管理
  • 人工知能

フィンガープリント

「Temporal network change detection using network centralities」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル