Template recognition and ribonucleotide specificity of the DNA primase of bacteriophage T7

Takahiro Kusakabe, Charles C. Richardson

研究成果: ジャーナルへの寄稿学術誌査読

35 被引用数 (Scopus)


The 63-kDa gene 4 DNA primase of phage T7 catalyzes the synthesis of oligoribonucleotides on single-stranded DNA templates. At the sequence, 5'- GTC-3', the primase synthesizes the dinucleotide pppAC; the cytidine residue of the recognition sequence is cryptic. Only tetraribonucleotides function as primers, but the specificity for the third and fourth position is not as stringent with a preference of CMP > AMP >> UMP > GMP. The predominant recognition sites on M13 DNA are 5'-(G/T)G-GTC-3' and 5'-GTGTC-3'. Synthesis is usually limited to tetranucleotides, but T7 primase can synthesize longer oligoribonucleotides on templates containing long stretches of guanosine residues 5' to the recognition sequence. The specificity beyond the first two positions of the primer increases as the length of the template on the 3'- side of 5'-GTC-3' increases. On an oligonucleotide having 20 3'-flanking cytidine residues GMP is incorporated at the third position; incorporation is reduced 4-fold when the flanking sequence reaches 65 residues, and little is incorporated on M13 templates. The presence of the 56-kDa gene 4 helicase decreases the incorporation of GMP on long templates. We propose that pausing is required for the incorporation of less preferred nucleotides and that pausing is decreased by the ability of the primase to translocate 5' to 3' on templates having long 3'-flanking sequences.

ジャーナルJournal of Biological Chemistry
出版ステータス出版済み - 2月 28 1997

!!!All Science Journal Classification (ASJC) codes

  • 生化学
  • 分子生物学
  • 細胞生物学


「Template recognition and ribonucleotide specificity of the DNA primase of bacteriophage T7」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。