Task-oriented reinforcement learning for continuing task in dynamic environment

Md Abdus Samad Kamal, Junichi Murata, Kotaro Hirasawa

研究成果: ジャーナルへの寄稿学術誌査読

5 被引用数 (Scopus)

抄録

This paper presents task-oriented reinforcement learning, a modified approach of reinforcement-learning to simplify continuing dynamic problems in a more realistic and human-like way of thinking from the viewpoint of the tasks. In this learning method an agent takes as input the 'state of task' instead of 'state of environment' and chooses appropriate action to achieve the goal of the corresponding task. The proposed system learns from the viewpoint of tasks that enables the system to find and follow a precise policy in a continuing-dynamic environment and offers simple implementation for a multiple agents system.

本文言語英語
ページ(範囲)7-12
ページ数6
ジャーナルResearch Reports on Information Science and Electrical Engineering of Kyushu University
9
1
出版ステータス出版済み - 3月 2004

!!!All Science Journal Classification (ASJC) codes

  • コンピュータ サイエンス(全般)
  • 電子工学および電気工学

フィンガープリント

「Task-oriented reinforcement learning for continuing task in dynamic environment」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル