TY - JOUR
T1 - Synthesis of modulator-driven highly stable zirconium-fumarate frameworks and mechanistic investigations of their arsenite and arsenate adsorption from aqueous solutions
AU - Muthu Prabhu, Subbaiah
AU - Kancharla, Srinivasarao
AU - Park, Chang Min
AU - Sasaki, Keiko
N1 - Funding Information:
Financial support was provided to Dr. Keiko Sasaki by the Japan Society for the Promotion of Science (JSPS) through research grants JP 16F16082 and JP 17F17081 and to SMP (P16082) and KS (P17081) by the JSPS Postdoctoral Fellowship for Foreign Researchers. SMP and CMP acknowledge the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A6A1A03024962) for the support of BET and zeta potential analyses.
Publisher Copyright:
© The Royal Society of Chemistry.
PY - 2019
Y1 - 2019
N2 - Here, we synthesized a modulator (benzoic acid (BA))-driven zirconium-fumaric acid (Zr-fum) metal-organic framework (MOF) and investigated in detail the adsorption mechanism of arsenic oxyanions (AsO43− and AsO33−) and their stability before and after adsorption from water. Without the support of the modulator, BA, Zr-fum formed an amorphous MOF due to the occurrence of quick precipitation of both zirconium and -fum. Various amounts of BA, 0-10 eq. to ZrCl4, were used to control the surface charge on the MOF nanoparticles, which directly corresponds to the colloid stability of the MOF and helps to obtain a defect-free Zr-fum MOF for high uptakes of AsO43− and AsO33− from water. With the concentration of 3 eq. BA, the adsorption capacities of both arsenic oxyanions on the Zr-fum MOF were found to be higher than those on other MOFs. The CHN analysis indicated that the excess of -fum present does not alter the adsorption densities of AsO43− and AsO33− on MOFs in addition to the negligible amount of BA except for the Zr-fum-10 eq. BA MOF where it is present in higher amounts, as confirmed by NMR studies. The physicochemical properties of the synthesized MOFs with/without the modulator support adsorbents before and after the adsorption of AsO43− and AsO33− were extensively characterized using several advanced instrumental techniques. The maximum uptake performance of AsO43− (1.159 mmol g−1) and AsO33− (1.121 mmol g−1) was obtained using the Langmuir adsorption isotherm. The adsorption of both AsO43− and AsO33− takes place by electrostatic interaction/complexation and ligand exchange with Zr-fum-5 eq. BA. In addition, the Zr-fum-5 eq. BA was recycled up to four times at a sustained efficiency after washing with 0.1 M NaOH. Owing to their high uptake capacities of AsO43− and AsO33−, the synthesized MOFs are expected to have potential applications as adsorbents for practical applications.
AB - Here, we synthesized a modulator (benzoic acid (BA))-driven zirconium-fumaric acid (Zr-fum) metal-organic framework (MOF) and investigated in detail the adsorption mechanism of arsenic oxyanions (AsO43− and AsO33−) and their stability before and after adsorption from water. Without the support of the modulator, BA, Zr-fum formed an amorphous MOF due to the occurrence of quick precipitation of both zirconium and -fum. Various amounts of BA, 0-10 eq. to ZrCl4, were used to control the surface charge on the MOF nanoparticles, which directly corresponds to the colloid stability of the MOF and helps to obtain a defect-free Zr-fum MOF for high uptakes of AsO43− and AsO33− from water. With the concentration of 3 eq. BA, the adsorption capacities of both arsenic oxyanions on the Zr-fum MOF were found to be higher than those on other MOFs. The CHN analysis indicated that the excess of -fum present does not alter the adsorption densities of AsO43− and AsO33− on MOFs in addition to the negligible amount of BA except for the Zr-fum-10 eq. BA MOF where it is present in higher amounts, as confirmed by NMR studies. The physicochemical properties of the synthesized MOFs with/without the modulator support adsorbents before and after the adsorption of AsO43− and AsO33− were extensively characterized using several advanced instrumental techniques. The maximum uptake performance of AsO43− (1.159 mmol g−1) and AsO33− (1.121 mmol g−1) was obtained using the Langmuir adsorption isotherm. The adsorption of both AsO43− and AsO33− takes place by electrostatic interaction/complexation and ligand exchange with Zr-fum-5 eq. BA. In addition, the Zr-fum-5 eq. BA was recycled up to four times at a sustained efficiency after washing with 0.1 M NaOH. Owing to their high uptake capacities of AsO43− and AsO33−, the synthesized MOFs are expected to have potential applications as adsorbents for practical applications.
UR - http://www.scopus.com/inward/record.url?scp=85063664095&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063664095&partnerID=8YFLogxK
U2 - 10.1039/C8CE01424H
DO - 10.1039/C8CE01424H
M3 - Article
AN - SCOPUS:85063664095
SN - 1466-8033
VL - 21
SP - 2320
EP - 2332
JO - CrystEngComm
JF - CrystEngComm
IS - 14
ER -