Surface Roughness Determination Using Spectral Correlations of Scattered Intensities and an Artificial Neural Network Technique

Kuniaki Yoshitomi, Akira Ishimaru, Jeng Neng Hwang, Jei Shuan Chen

研究成果: ジャーナルへの寄稿学術誌査読

10 被引用数 (Scopus)

抄録

An artificial neural network (ANN) technique is applied to the determination of the rms height and the correlation distance of one-dimensional rough surfaces. The surface is illuminated by a beam wave, and the intensity correlations of the scattered wave at two wavelengths in the specular and backward directions are used to determine the roughness parameters. Scattered intensity correlations calculated by Monte Carlo simulations are used to train the ANN, and two methods, the explicit inversion method and the iterative constrained inversion method, are used to perform the inversion. The inversion values are compared with the target values, and the iterative constrained method is shown to give smaller errors, but requires longer computer CPU time.

本文言語英語
ページ(範囲)498-502
ページ数5
ジャーナルIEEE Transactions on Antennas and Propagation
41
4
DOI
出版ステータス出版済み - 4月 1993

!!!All Science Journal Classification (ASJC) codes

  • 電子工学および電気工学

フィンガープリント

「Surface Roughness Determination Using Spectral Correlations of Scattered Intensities and an Artificial Neural Network Technique」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル