Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables

Kazuyoshi Kurihara, Kazuhiro Yamamoto, Junichi Takahara, Akira Otomo

研究成果: ジャーナルへの寄稿学術誌査読

33 被引用数 (Scopus)

抄録

Analytic solutions to the superfocusing modes of surface plasmon polaritons in the wedge-shaped geometry are theoretically studied by solving the Helmholtz wave equation for the magnetic field using quasi-separation of variables in combination with perturbation methods. The solutions are described as a product of radial and extended angular functions and are obtained for a lossless metallic wedge and V-groove by determining the separation quantities that satisfy the boundary conditions. For the metallic wedge and V-groove, we show that the radial functions of the zeroth order are approximately described by the imaginary Bessel and modified Whittaker functions, respectively, and that the extended angular functions have odd and even symmetries, respectively, for reflection in the central plane of the wedge-shaped geometry. Importantly, we show that the wave numbers of superfocusing surface plasmon polaritons in the metallic wedge and V-groove are clearly different in their radial dependence.

本文言語英語
論文番号295401
ジャーナルJournal of Physics A: Mathematical and Theoretical
41
29
DOI
出版ステータス出版済み - 7月 25 2008
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 統計物理学および非線形物理学
  • 統計学および確率
  • モデリングとシミュレーション
  • 数理物理学
  • 物理学および天文学(全般)

フィンガープリント

「Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル