Spinal astrocytes in superficial laminae gate brainstem descending control of mechanosensory hypersensitivity

Yuta Kohro, Tsuyoshi Matsuda, Kohei Yoshihara, Keita Kohno, Keisuke Koga, Ryuichi Katsuragi, Takaaki Oka, Ryoichi Tashima, Sho Muneta, Takuya Yamane, Shota Okada, Kazuya Momokino, Aogu Furusho, Kenji Hamase, Takumi Oti, Hirotaka Sakamoto, Kenichiro Hayashida, Ryosuke Kobayashi, Takuro Horii, Izuho HatadaHidetoshi Tozaki-Saitoh, Katsuhiko Mikoshiba, Verdon Taylor, Kazuhide Inoue, Makoto Tsuda

研究成果: ジャーナルへの寄稿学術誌査読

81 被引用数 (Scopus)

抄録

Astrocytes are critical regulators of CNS function and are proposed to be heterogeneous in the developing brain and spinal cord. Here we identify a population of astrocytes located in the superficial laminae of the spinal dorsal horn (SDH) in adults that is genetically defined by Hes5. In vivo imaging revealed that noxious stimulation by intraplantar capsaicin injection activated Hes5+ SDH astrocytes via α1A-adrenoceptors (α1A-ARs) through descending noradrenergic signaling from the locus coeruleus. Intrathecal norepinephrine induced mechanical pain hypersensitivity via α1A-ARs in Hes5+ astrocytes, and chemogenetic stimulation of Hes5+ SDH astrocytes was sufficient to produce the hypersensitivity. Furthermore, capsaicin-induced mechanical hypersensitivity was prevented by the inhibition of descending locus coeruleus–noradrenergic signaling onto Hes5+ astrocytes. Moreover, in a model of chronic pain, α1A-ARs in Hes5+ astrocytes were critical regulators for determining an analgesic effect of duloxetine. Our findings identify a superficial SDH-selective astrocyte population that gates descending noradrenergic control of mechanosensory behavior.

本文言語英語
ページ(範囲)1376-1387
ページ数12
ジャーナルNature Neuroscience
23
11
DOI
出版ステータス出版済み - 11月 1 2020

!!!All Science Journal Classification (ASJC) codes

  • 神経科学一般

フィンガープリント

「Spinal astrocytes in superficial laminae gate brainstem descending control of mechanosensory hypersensitivity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル