Speeding up elliptic scalar multiplication using multidoubling

Yasuyuki Sakai, Kouichi Sakurai

研究成果: ジャーナルへの寄稿レター査読

5 被引用数 (Scopus)

抄録

We discuss multidoubling methods for efficient elliptic scalar multiplication. The methods allows computation of 2k P directly from P without computing the intermediate points, where P denotes a randomly selected point on an elliptic curve. We introduce algorithms for elliptic curves with Montgomery form and Weierstrass form defined over finite fields with characteristic greater than 3 in terms of affine coordinates. These algorithms are faster than k repeated doublings. Moreover, we apply the algorithms to scalar multiplication on elliptic curves and analyze computational complexity. As a result of our implementation with respect to the Montgomery and Weierstrass forms in terms of affine coordinates, we achieved running time reduced by 28% and 31%, respectively, in the scalar multiplication of an elliptic curve of size 160-bit over finite fields with characteristic greater than 3.

本文言語英語
ページ(範囲)1075-1083
ページ数9
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E85-A
5
出版ステータス出版済み - 5月 2002

!!!All Science Journal Classification (ASJC) codes

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Speeding up elliptic scalar multiplication using multidoubling」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル