Spatio-temporal background models for object detection

Satoshi Yoshinaga, Yosuke Nonaka, Atsushi Shimada, Hajime Nagahara, Rin Ichiro Taniguchi

研究成果: 書籍/レポート タイプへの寄稿

抄録

One of the fundamental problems in computer vision is detecting regions or objects of interest from an image sequence. Background subtraction, which removes a background image from the input image, is widely used for detecting foreground objects in practical applications, since it enables us to detect foreground objects without any previous knowledge of them. However, simple background subtraction often detects not only foreground objects but also a lot of noise regions, because it is quite sensitive to background changes. In general, background changes which occur in outdoor scenes can be mainly classified into two types: • Illumination changes – changes caused by lighting conditions such as the sun rising, setting, or being blocked by clouds, • Dynamic changes – changes caused by the swaying motion of tree branches, leaves and grass, fleeting cloud, waves on water and so on.

本文言語英語
ホスト出版物のタイトルBackground Modeling and Foreground Detection for Video Surveillance
出版社CRC Press
ページ13-1-13-20
ISBN(電子版)9781482205381
ISBN(印刷版)9781482205374
DOI
出版ステータス出版済み - 1月 1 2014

!!!All Science Journal Classification (ASJC) codes

  • コンピュータサイエンス一般
  • 工学一般
  • 数学一般

フィンガープリント

「Spatio-temporal background models for object detection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル