Sparse principal component regression with adaptive loading

Shuichi Kawano, Hironori Fujisawa, Toyoyuki Takada, Toshihiko Shiroishi

研究成果: ジャーナルへの寄稿学術誌査読

23 被引用数 (Scopus)

抄録

Principal component regression (PCR) is a two-stage procedure that selects some principal components and then constructs a regression model regarding them as new explanatory variables. Note that the principal components are obtained from only explanatory variables and not considered with the response variable. To address this problem, we propose the sparse principal component regression (SPCR) that is a one-stage procedure for PCR. SPCR enables us to adaptively obtain sparse principal component loadings that are related to the response variable and select the number of principal components simultaneously. SPCR can be obtained by the convex optimization problem for each parameter with the coordinate descent algorithm. Monte Carlo simulations and real data analyses are performed to illustrate the effectiveness of SPCR.

本文言語英語
ページ(範囲)192-203
ページ数12
ジャーナルComputational Statistics and Data Analysis
89
DOI
出版ステータス出版済み - 9月 1 2015
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 統計学および確率
  • 計算数学
  • 計算理論と計算数学
  • 応用数学

フィンガープリント

「Sparse principal component regression with adaptive loading」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル