Sparse principal component regression via singular value decomposition approach

研究成果: ジャーナルへの寄稿学術誌査読

3 被引用数 (Scopus)

抄録

Principal component regression (PCR) is a two-stage procedure: the first stage performs principal component analysis (PCA) and the second stage builds a regression model whose explanatory variables are the principal components obtained in the first stage. Since PCA is performed using only explanatory variables, the principal components have no information about the response variable. To address this problem, we present a one-stage procedure for PCR based on a singular value decomposition approach. Our approach is based upon two loss functions, which are a regression loss and a PCA loss from the singular value decomposition, with sparse regularization. The proposed method enables us to obtain principal component loadings that include information about both explanatory variables and a response variable. An estimation algorithm is developed by using the alternating direction method of multipliers. We conduct numerical studies to show the effectiveness of the proposed method.

本文言語英語
ページ(範囲)795-823
ページ数29
ジャーナルAdvances in Data Analysis and Classification
15
3
DOI
出版ステータス出版済み - 9月 2021
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • コンピュータ サイエンスの応用
  • 応用数学

フィンガープリント

「Sparse principal component regression via singular value decomposition approach」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル