Space filling and depletion

Yuliy Baryshnikov, E. G. Coffman, Predrag Jelenković

研究成果: ジャーナルへの寄稿学術誌査読

6 被引用数 (Scopus)

抄録

For a given k ≥ 1, subintervals of a given interval [0, X] arrive at random and are accepted (allocated) so long as they overlap fewer than k subintervals already accepted. Subintervals not accepted are cleared, while accepted subintervals remain allocated for random retention times before they are released and made available to subsequent arrivals. Thus, the system operates as a generalized many-server queue under a loss protocol. We study a discretized version of this model that appears in reference theories for a number of applications, including communication networks, surface adsorption-desorption processes, and reservation systems. Our primary interest is in steady-state estimates of the vacant space, i.e. the total length of available subintervals kX - σl i, where the l i0 are the lengths of the subintervals currently allocated. We obtain explicit results for k = 1 and for general k with all subinterval lengths equal to 2, the classical dimer case of chemical applications. Our focus is on the asymptotic regime of large retention times.

本文言語英語
ページ(範囲)691-702
ページ数12
ジャーナルJournal of Applied Probability
41
3
DOI
出版ステータス出版済み - 9月 1 2004
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 統計学および確率
  • 数学 (全般)
  • 統計学、確率および不確実性

フィンガープリント

「Space filling and depletion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル