Simple Linear-Time Repetition Factorization

Yuki Yonemoto, Shunsuke Inenaga

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

A factorization f1,…,fm of a string w of length n is called a repetition factorization of w if fi is a repetition, i.e., fi is a form of xkx where x is a non-empty string, x is a (possibly-empty) proper prefix of x, and k≥2. Dumitran et al. [SPIRE 2015] presented an O(n)-time and space algorithm for computing an arbitrary repetition factorization of a given string of length n. Their algorithm heavily relies on the Union-Find data structure on trees proposed by Gabow and Tarjan [JCSS 1985] that works in linear time on the word RAM model, and an interval stabbing data structure of Schmidt [ISAAC 2009]. In this paper, we explore more combinatorial insights into the problem, and present a simple algorithm to compute an arbitrary repetition factorization of a given string of length n in O(n) time, without relying on data structures for Union-Find and interval stabbing. Our algorithm follows the approach by Inoue et al. [ToCS 2022] that computes the smallest/largest repetition factorization in O(nlogn) time.

本文言語英語
ホスト出版物のタイトルString Processing and Information Retrieval - 31st International Symposium, SPIRE 2024, Proceedings
編集者Zsuzsanna Lipták, Edleno Moura, Karina Figueroa, Ricardo Baeza-Yates
出版社Springer Science and Business Media Deutschland GmbH
ページ348-361
ページ数14
ISBN(印刷版)9783031721991
DOI
出版ステータス出版済み - 2025
イベント31st International Symposium on String Processing and Information Retrieval, SPIRE 2024 - Puerto Vallarta, メキシコ
継続期間: 9月 23 20249月 25 2024

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
14899 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

会議

会議31st International Symposium on String Processing and Information Retrieval, SPIRE 2024
国/地域メキシコ
CityPuerto Vallarta
Period9/23/249/25/24

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータサイエンス一般

フィンガープリント

「Simple Linear-Time Repetition Factorization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル