Semi-supervised logistic discrimination via regularized gaussian basis expansions

Shuichi Kawano, Sadanori Konishi

研究成果: ジャーナルへの寄稿学術誌査読

2 被引用数 (Scopus)

抄録

The problem of constructing classification methods based on both labeled and unlabeled data sets is considered for analyzing data with complex structures. We introduce a semi-supervised logistic discriminant model with Gaussian basis expansions. Unknown parameters included in the logistic model are estimated by regularization method along with the technique of EM algorithm. For selection of adjusted parameters, we derive a model selection criterion from Bayesian viewpoints. Numerical studies are conducted to investigate the effectiveness of our proposed modeling procedures.

本文言語英語
ページ(範囲)2412-2423
ページ数12
ジャーナルCommunications in Statistics - Theory and Methods
40
13
DOI
出版ステータス出版済み - 1月 2011
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 統計学および確率

フィンガープリント

「Semi-supervised logistic discrimination via regularized gaussian basis expansions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル