Semi-supervised logistic discrimination via labeled data and unlabeled data from different sampling distributions

研究成果: ジャーナルへの寄稿学術誌査読

8 被引用数 (Scopus)

抄録

This article addresses the problem of classification method based on both labeled and unlabeled data, where we assume that a density function for labeled data is different from that for unlabeled data. We propose a semi-supervised logistic regression model for classification problem along with the technique of covariate shift adaptation. Unknown parameters involved in proposed models are estimated by regularization with expectation and maximization (EM) algorithm. A crucial issue in the modeling process is the choices of adjusted parameters in our semi-supervised logistic models. In order to select the parameters, a model selection criterion is derived from an information-theoretic approach. Some numerical studies show that our modeling procedure performs well in various cases.

本文言語英語
ページ(範囲)472-481
ページ数10
ジャーナルStatistical Analysis and Data Mining
6
6
DOI
出版ステータス出版済み - 12月 2013
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 分析
  • 情報システム
  • コンピュータ サイエンスの応用

フィンガープリント

「Semi-supervised logistic discrimination via labeled data and unlabeled data from different sampling distributions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル