Semi-supervised logistic discrimination via graph-based regularization

Shuichi Kawano, Toshihiro Misumi, Sadanori Konishi

研究成果: ジャーナルへの寄稿学術誌査読

6 被引用数 (Scopus)

抄録

We address the problem of constructing a nonlinear discriminant procedure based on both labeled and unlabeled data sets.Asemi-supervised logistic model with Gaussian basis functions is presented along with the technique of graph-based regularization. A crucial issue in modeling process is the choice of tuning parameters included in the nonlinear semisupervised logistic models. In order to select these adjusted parameters, we derive model selection criteria from the viewpoints of information theory and also the Bayesian approach. Some numerical examples are given to investigate the effectiveness of our proposed semisupervised modeling strategies.

本文言語英語
ページ(範囲)203-216
ページ数14
ジャーナルNeural Processing Letters
36
3
DOI
出版ステータス出版済み - 12月 2012
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 神経科学一般
  • コンピュータ ネットワークおよび通信
  • 人工知能

フィンガープリント

「Semi-supervised logistic discrimination via graph-based regularization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル