Semantic Segmentation Technique to Identify Landing Area for Autonomous Spacecraft

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

For deep space landing missions, spacecraft are required to identify their expected landing sites autonomously because of the extremely long time delay caused by the distance between the spacecraft and Earth. This identification process is desirable to finish within several seconds by onboard computers with limited calculation performance. Moreover, autonomous identification based on natural features of landing sites are highly recommended in future missions, although some artificial target markers have been used for navigation and control to the landing site in some previous missions. To make fast but reliable identification of landing sites for the automatic task, this research utilizes a deep learning processing for images taken in different light-conditions and altitudes. First, a semantic segmentation model for rocks in terrain images is developed. For robust identification, some improvements are introduced in the semantic segmentation process. Then, to identify the same place in images taken at different altitudes, a comparison algorithm based on triangular shapes is applied. Thus after training, the semantic segmentation model can detect the same place from several images in a relatively short computational time.

本文言語英語
ホスト出版物のタイトルThe Proceedings of the 2021 Asia-Pacific International Symposium on Aerospace Technology APISAT 2021, Volume 2
編集者Sangchul Lee, Cheolheui Han, Jeong-Yeol Choi, Seungkeun Kim, Jeong Ho Kim
出版社Springer Science and Business Media Deutschland GmbH
ページ897-910
ページ数14
ISBN(印刷版)9789811926341
DOI
出版ステータス出版済み - 2023
イベントAsia-Pacific International Symposium on Aerospace Technology, APISAT 2021 - Virtual, Online
継続期間: 11月 15 202111月 17 2021

出版物シリーズ

名前Lecture Notes in Electrical Engineering
913
ISSN(印刷版)1876-1100
ISSN(電子版)1876-1119

会議

会議Asia-Pacific International Symposium on Aerospace Technology, APISAT 2021
CityVirtual, Online
Period11/15/2111/17/21

!!!All Science Journal Classification (ASJC) codes

  • 産業および生産工学

フィンガープリント

「Semantic Segmentation Technique to Identify Landing Area for Autonomous Spacecraft」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル