Searching for Physical Documents in Archival Repositories

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

Early retrieval systems were used to search physical media (e.g., paper) using manually created metadata. Modern ranked retrieval techniques are far more capable, but they require that content be either born digital or digitized. For physical content, searching metadata remains the state of the art. This paper seeks to change that, using a textual-edge graph neural network to learn relations between items from available metadata and from any content that has been digitized. Results show that substantial improvement over the best prior method can be achieved.

本文言語英語
ホスト出版物のタイトルSIGIR 2024 - Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval
出版社Association for Computing Machinery, Inc
ページ2614-2618
ページ数5
ISBN(電子版)9798400704314
DOI
出版ステータス出版済み - 7月 10 2024
イベント47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024 - Washington, 米国
継続期間: 7月 14 20247月 18 2024

出版物シリーズ

名前SIGIR 2024 - Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval

会議

会議47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024
国/地域米国
CityWashington
Period7/14/247/18/24

!!!All Science Journal Classification (ASJC) codes

  • 情報システム
  • ソフトウェア

フィンガープリント

「Searching for Physical Documents in Archival Repositories」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル