SATJiP: Spatial and Augmented Temporal Jigsaw Puzzles for Video Anomaly Detection

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

Video Anomaly Detection (VAD) is a significant task, which refers to taking a video clip as input and outputting class labels, e.g., normal or abnormal, at the frame level. Wang et al. proposed a method called DSTJiP, which trains the model by solving Decoupled Spatial and Temporal Jigsaw Puzzles and achieves impressive VAD performance. However, the model sometimes fails to detect abnormal human actions where abnormal motions are accompanied by normal motions. The reason is that the model learns representations of little- and non-motion parts of training examples, resulting in being insensitive to abnormal motions. To circumvent this problem, we propose to solve Spatial and Augmented Temporal Jigsaw Puzzles (SATJiP) as an extension of DSTJiP. SATJiP encourages the model to focus on motions by a novel pretext task, enabling it to detect abnormal motions accompanied by normal motions. Experiments conducted on three standard VAD benchmarks demonstrate that SATJiP outperforms the state-of-the-art methods.

本文言語英語
ホスト出版物のタイトルAdvances in Knowledge Discovery and Data Mining - 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Proceedings
編集者De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin
出版社Springer Science and Business Media Deutschland GmbH
ページ27-40
ページ数14
ISBN(印刷版)9789819722419
DOI
出版ステータス出版済み - 2024
イベント28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024 - Taipei, 台湾
継続期間: 5月 7 20245月 10 2024

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
14645 LNAI
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

会議

会議28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024
国/地域台湾
CityTaipei
Period5/7/245/10/24

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータサイエンス一般

フィンガープリント

「SATJiP: Spatial and Augmented Temporal Jigsaw Puzzles for Video Anomaly Detection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル