抄録
We consider the ranking problem of learning a ranking function from the data set of objects each of which is endowed with an attribute vector and a ranking label chosen from the ordered set of labels. We propose two different formulations: primal problem, primal problem with dual representation of normal vector, and then propose to apply the kernel technique to the latter formulation. We also propose algorithms based on the row and column generation in order to mitigate the computational burden due to the large number of objects.
本文言語 | 英語 |
---|---|
ページ(範囲) | 394-409 |
ページ数 | 16 |
ジャーナル | Journal of the Operations Research Society of Japan |
巻 | 58 |
号 | 4 |
DOI | |
出版ステータス | 出版済み - 2015 |
外部発表 | はい |
!!!All Science Journal Classification (ASJC) codes
- 決定科学一般
- 経営科学およびオペレーションズ リサーチ