Root PRR7 Improves the Accuracy of the Shoot Circadian Clock through Nutrient Transport

Kyohei Uemoto, Fumito Mori, Shota Yamauchi, Akane Kubota, Nozomu Takahashi, Haruki Egashira, Yumi Kunimoto, Takashi Araki, Atsushi Takemiya, Hiroshi Ito, Motomu Endo

研究成果: ジャーナルへの寄稿学術誌査読

5 被引用数 (Scopus)

抄録

The circadian clock allows plants to anticipate and adapt to periodic environmental changes. Organ- and tissue-specific properties of the circadian clock and shoot-to-root circadian signaling have been reported. While this long-distance signaling is thought to coordinate physiological functions across tissues, little is known about the feedback regulation of the root clock on the shoot clock in the hierarchical circadian network. Here, we show that the plant circadian clock conveys circadian information between shoots and roots through sucrose and K+. We also demonstrate that K+ transport from roots suppresses the variance of period length in shoots and then improves the accuracy of the shoot circadian clock. Sucrose measurements and qPCR showed that root sucrose accumulation was regulated by the circadian clock. Furthermore, root circadian clock genes, including PSEUDO-RESPONSE REGULATOR7 (PRR7), were regulated by sucrose, suggesting the involvement of sucrose from the shoot in the regulation of root clock gene expression. Therefore, we performed time-series measurements of xylem sap and micrografting experiments using prr7 mutants and showed that root PRR7 regulates K+ transport and suppresses variance of period length in the shoot. Our modeling analysis supports the idea that root-to-shoot signaling contributes to the precision of the shoot circadian clock. We performed micrografting experiments that illustrated how root PRR7 plays key roles in maintaining the accuracy of shoot circadian rhythms. We thus present a novel directional signaling pathway for circadian information from roots to shoots and propose that plants modulate physiological events in a timely manner through various timekeeping mechanisms.

本文言語英語
ページ(範囲)352-362
ページ数11
ジャーナルPlant and Cell Physiology
64
3
DOI
出版ステータス出版済み - 3月 1 2023

!!!All Science Journal Classification (ASJC) codes

  • 生理学
  • 植物科学
  • 細胞生物学

フィンガープリント

「Root PRR7 Improves the Accuracy of the Shoot Circadian Clock through Nutrient Transport」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル