Rice Straw Cellulose Nanofibrils via Aqueous Counter Collision and Differential Centrifugation and Their Self-Assembled Structures

Feng Jiang, Tetsuo Kondo, You Lo Hsieh

研究成果: ジャーナルへの寄稿学術誌査読

58 被引用数 (Scopus)

抄録

Rice straw cellulose was completely defibrillated via aqueous counter collision (ACC) at a low energy input of 15 kWh/kg, then fractionated by differential centrifugation into four increasing weight fractions of progressively thinner cellulose nanofibrils (CNFs): 6.9% in 80-200 nm, 14.4% in 20-80 nm, 20.3% in 5-20 nm, and 58.4% in less than 5 nm thickness. The 93.1% less than 80 nm or 78.7% less than 20 nm thick CNFs yields were more than double those from wood pulp by other mechanical means but at a lower energy input. The smallest (3.7 nm thick and 5.5 nm wide) CNFs were only a third or less in lateral dimensions than those obatined through ACC processed from wood pulp, bamboo, and microbial cellulose pellicle. The less than 20 nm thick CNFs could self-assemble into continuous submicron (136 nm) wide fibers by freezing and freeze-drying or semitransparent (13-42% optical transmittance) film by ultrafiltration and air-drying with excellent mechanical properties (164 MPa tensile strength, 4 GPa Young's modulus, and 16% strain at break). ACC defibrillated CNFs retained essentially the same chemical and crystalline structures and thermal stability as the original rice straw cellulose and therefore were much more thermally stable than TEMPO oxidized CNFs and sulfuric acid hydrolyzed cellulose nanocrystals from the same rice straw cellulose.

本文言語英語
ページ(範囲)1697-1706
ページ数10
ジャーナルACS Sustainable Chemistry and Engineering
4
3
DOI
出版ステータス出版済み - 3月 7 2016

!!!All Science Journal Classification (ASJC) codes

  • 化学 (全般)
  • 環境化学
  • 化学工学(全般)
  • 再生可能エネルギー、持続可能性、環境

フィンガープリント

「Rice Straw Cellulose Nanofibrils via Aqueous Counter Collision and Differential Centrifugation and Their Self-Assembled Structures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル