TY - JOUR
T1 - RF-MaloSite and DL-Malosite
T2 - Methods based on random forest and deep learning to identify malonylation sites
AU - AL-barakati, Hussam
AU - Thapa, Niraj
AU - Hiroto, Saigo
AU - Roy, Kaushik
AU - Newman, Robert H.
AU - KC, Dukka
N1 - Funding Information:
This work was supported by National Science Foundation (NSF) grant nos. 2021734, 1564606 and 1901793 (to DK). RHN is supported by an HBCU-UP Excellence in Research Award from NSF (1901793) and an SC1 Award from the National Institutes of Health National Institute of General Medical Science (5SC1GM130545). HS was supported by JSPS KAKENHI Grant Numbers JP18H01762 and JP19H04176.
Publisher Copyright:
© 2020 The Authors
PY - 2020
Y1 - 2020
N2 - Malonylation, which has recently emerged as an important lysine modification, regulates diverse biological activities and has been implicated in several pervasive disorders, including cardiovascular disease and cancer. However, conventional global proteomics analysis using tandem mass spectrometry can be time-consuming, expensive and technically challenging. Therefore, to complement and extend existing experimental methods for malonylation site identification, we developed two novel computational methods for malonylation site prediction based on random forest and deep learning machine learning algorithms, RF-MaloSite and DL-MaloSite, respectively. DL-MaloSite requires the primary amino acid sequence as an input and RF-MaloSite utilizes a diverse set of biochemical, physiochemical and sequence-based features. While systematic assessment of performance metrics suggests that both ‘RF-MaloSite’ and ‘DL-MaloSite’ perform well in all metrics tested, our methods perform particularly well in the areas of accuracy, sensitivity and overall method performance (assessed by the Matthew's Correlation Coefficient). For instance, RF-MaloSite exhibited MCC scores of 0.42 and 0.40 using 10-fold cross-validation and an independent test set, respectively. Meanwhile, DL-MaloSite was characterized by MCC scores of 0.51 and 0.49 based on 10-fold cross-validation and an independent set, respectively. Importantly, both methods exhibited efficiency scores that were on par or better than those achieved by existing malonylation site prediction methods. The identification of these sites may also provide important insights into the mechanisms of crosstalk between malonylation and other lysine modifications, such as acetylation, glutarylation and succinylation. To facilitate their use, both methods have been made freely available to the research community at https://github.com/dukkakc/DL-MaloSite-and-RF-MaloSite.
AB - Malonylation, which has recently emerged as an important lysine modification, regulates diverse biological activities and has been implicated in several pervasive disorders, including cardiovascular disease and cancer. However, conventional global proteomics analysis using tandem mass spectrometry can be time-consuming, expensive and technically challenging. Therefore, to complement and extend existing experimental methods for malonylation site identification, we developed two novel computational methods for malonylation site prediction based on random forest and deep learning machine learning algorithms, RF-MaloSite and DL-MaloSite, respectively. DL-MaloSite requires the primary amino acid sequence as an input and RF-MaloSite utilizes a diverse set of biochemical, physiochemical and sequence-based features. While systematic assessment of performance metrics suggests that both ‘RF-MaloSite’ and ‘DL-MaloSite’ perform well in all metrics tested, our methods perform particularly well in the areas of accuracy, sensitivity and overall method performance (assessed by the Matthew's Correlation Coefficient). For instance, RF-MaloSite exhibited MCC scores of 0.42 and 0.40 using 10-fold cross-validation and an independent test set, respectively. Meanwhile, DL-MaloSite was characterized by MCC scores of 0.51 and 0.49 based on 10-fold cross-validation and an independent set, respectively. Importantly, both methods exhibited efficiency scores that were on par or better than those achieved by existing malonylation site prediction methods. The identification of these sites may also provide important insights into the mechanisms of crosstalk between malonylation and other lysine modifications, such as acetylation, glutarylation and succinylation. To facilitate their use, both methods have been made freely available to the research community at https://github.com/dukkakc/DL-MaloSite-and-RF-MaloSite.
UR - http://www.scopus.com/inward/record.url?scp=85083026911&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85083026911&partnerID=8YFLogxK
U2 - 10.1016/j.csbj.2020.02.012
DO - 10.1016/j.csbj.2020.02.012
M3 - Article
AN - SCOPUS:85083026911
SN - 2001-0370
VL - 18
SP - 852
EP - 860
JO - Computational and Structural Biotechnology Journal
JF - Computational and Structural Biotechnology Journal
ER -