Relative position of four subspaces in a Hilbert space

Masatoshi Enomoto, Yasuo Watatani

    研究成果: ジャーナルへの寄稿学術誌査読

    14 被引用数 (Scopus)

    抄録

    We study the relative position of several subspaces in a separable infinite-dimensional Hilbert space. In finite-dimensional case, Gelfand and Ponomarev gave a complete classification of indecomposable systems of four subspaces. We construct exotic examples of indecomposable systems of four subspaces in infinite-dimensional Hilbert spaces. We extend their Coxeter functors and defect using Fredholm index. The relative position of subspaces has close connections with strongly irreducible operators and transitive lattices. There exists a relation between the defect and the Jones index in a type II1 factor setting.

    本文言語英語
    ページ(範囲)263-317
    ページ数55
    ジャーナルAdvances in Mathematics
    201
    2
    DOI
    出版ステータス出版済み - 4月 1 2006

    !!!All Science Journal Classification (ASJC) codes

    • 数学一般

    フィンガープリント

    「Relative position of four subspaces in a Hilbert space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル