Regular homotopy classes of immersions of 3-manifolds into 5-space

Osamu Saeki, András Szucs, Masamichi Takase

研究成果: ジャーナルへの寄稿学術誌査読

12 被引用数 (Scopus)

抄録

We give geometric formulae which enable us to detect (completely in some cases) the regular homotopy class of an immersion with trivial normal bundle of a closed oriented 3-manifold into 5-space. These are analogues of the geometric formulae for the Smale invariants due to Ekholm and the second author. As a corollary, we show that two embeddings into 5-space of a closed oriented 3-manifold with no 2-torsion in the second cohomology are regularly homotopic if and only if they have Seifert surfaces with the same signature. We also show that there exist two embeddings F0 and F8 : T3 right arrow-hooked R5 of the 3-torus T3 with the following properties: (1) F0#h is regularly homotopic to F8 for some immersion h : S3 right arrow, looped R5, and (2) the immersion h as above cannot be chosen from a regular homotopy class containing an embedding.

本文言語英語
ページ(範囲)13-32
ページ数20
ジャーナルManuscripta Mathematica
108
1
DOI
出版ステータス出版済み - 2002
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「Regular homotopy classes of immersions of 3-manifolds into 5-space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル