Regenerating Corticospinal Axons Innervate Phenotypically Appropriate Neurons within Neural Stem Cell Grafts

Hiromi Kumamaru, Paul Lu, Ephron S. Rosenzweig, Ken Kadoya, Mark H. Tuszynski

研究成果: ジャーナルへの寄稿学術誌査読

57 被引用数 (Scopus)


Neural progenitor cell grafts form new relays across sites of spinal cord injury (SCI). Using a panel of neuronal markers, we demonstrate that spinal neural progenitor grafts to sites of rodent SCI adopt diverse spinal motor and sensory interneuronal fates, representing most neuronal subtypes of the intact spinal cord, and spontaneously segregate into domains of distinct cell clusters. Host corticospinal motor axons regenerating into neural progenitor grafts innervate appropriate pre-motor interneurons, based on trans-synaptic tracing with herpes simplex virus. A human spinal neural progenitor cell graft to a non-human primate also received topographically appropriate corticospinal axon regeneration. Thus, grafted spinal neural progenitor cells give rise to a variety of neuronal progeny that are typical of the normal spinal cord; remarkably, regenerating injured adult corticospinal motor axons spontaneously locate appropriate motor domains in the heterogeneous, developing graft environment, without a need for additional exogenous guidance. Kumamaru et al. demonstrate that spinal cord neural progenitor cell grafts spontaneously segregate into motor and sensory domains when implanted into sites of spinal cord injury in rats and primates. Host corticospinal axons regenerating into grafts preferentially regenerate and synapse onto motor interneuron-rich domains, avoiding inappropriate sensory domains.

ジャーナルCell Reports
出版ステータス出版済み - 2月 26 2019

!!!All Science Journal Classification (ASJC) codes

  • 生化学、遺伝学、分子生物学一般


「Regenerating Corticospinal Axons Innervate Phenotypically Appropriate Neurons within Neural Stem Cell Grafts」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。