Reduction of weakly nonlinear parabolic partial differential equations

Hayato Chiba

研究成果: ジャーナルへの寄稿学術誌査読

2 被引用数 (Scopus)

抄録

It is known that the Swift-Hohenberg equation ∂u/∂t=-(∂x2+1)2+1)u+e{open}(u-u3) can be reduced to the Ginzburg-Landau equation (amplitude equation) ∂A/∂t=4∂x2A+e{open}(A-3A|A|2) by means of the singular perturbation method. This means that if e{open} > 0 is sufficiently small, a solution of the latter equation provides an approximate solution of the former one. In this paper, a reduction of a certain class of a system of nonlinear parabolic equations ∂u/∂t=Pu+e{open}f(u) is proposed. n amplitude equation of the system is defined and an error estimate of solutions is given. Further, it is proved under certain assumptions that if the amplitude equation has a stable steady state, then a given equation has a stable periodic solution. In particular, near the periodic solution, the error estimate of solutions holds uniformly in t > 0.

本文言語英語
論文番号101501
ジャーナルJournal of Mathematical Physics
54
10
DOI
出版ステータス出版済み - 10月 1 2013

!!!All Science Journal Classification (ASJC) codes

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Reduction of weakly nonlinear parabolic partial differential equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル