抄録
Amorphous films deposited by pulsed laser deposition from a crystalline Li2PO2N target in a N2 ambient atmosphere (LiPON-PLD) have been examined as an approach to reduce the charge-transfer resistance at the electrode-solid electrolyte interface. Despite the relatively low ionic conductivity of ca. 1.5 × 10-8 S cm-1 at 25 °C, the amorphous LiPON-PLD films deposited between a LiMn1.485Ni0.45Cr0.05O4 (LNM) cathode and LiPON electrolyte resulted in sharply improved electrochemical performance in terms of charge-transfer resistance and CV profiles. Cells without a LiPON-PLD film had a charge-transfer resistance of 4470 Ω-cm2 compared to 760 and 960 Ω-cm2 for the sample with 17 nm and 31 nm thick LiPON-PLD films, respectively. The LiPON-PLD amorphous films show no evidence of the continuous planar -P-N-P-N- backbone characteristic of the crystalline target material, but compared with LiPON prepared from radio frequency magnetron sputtering with Li3PO4 in a N2 atmosphere, the LiPON-PLD films were composed of a higher amount of triply coordinated P-N<PP with relatively lower contributions of P-N=P.
本文言語 | 英語 |
---|---|
ページ(範囲) | 116-122 |
ページ数 | 7 |
ジャーナル | Journal of Power Sources |
巻 | 312 |
DOI | |
出版ステータス | 出版済み - 4月 30 2016 |
外部発表 | はい |
!!!All Science Journal Classification (ASJC) codes
- 再生可能エネルギー、持続可能性、環境
- エネルギー工学および電力技術
- 物理化学および理論化学
- 電子工学および電気工学