Recognition of manipulation sequences by human hand based on Support Vector Machine

Kazuya Matsuo, Kouji Murakami, Tsutomu Hasegawa, Ryo Kurazume

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

This paper describes a method of recognizing a manual task executed by a human hand by using the Support Vector Machine (SVM). We define several task states which are segmented from the continuous motion of human fingers in the context of an object manipulation. Based on margins of SVMs, the method constructs a binary decision tree which most effectively classifies and symbolizes the task state from joint angle trajectories of human fingers as input. The binary decision tree constructed by our method has been evaluated through experiments of recognizing the task states during a valve manipulation.

本文言語英語
ホスト出版物のタイトルProceedings of the 33rd Annual Conference of the IEEE Industrial Electronics Society, IECON
ページ2801-2806
ページ数6
DOI
出版ステータス出版済み - 2007
イベント33rd Annual Conference of the IEEE Industrial Electronics Society, IECON - Taipei, 台湾
継続期間: 11月 5 200711月 8 2007

出版物シリーズ

名前IECON Proceedings (Industrial Electronics Conference)

その他

その他33rd Annual Conference of the IEEE Industrial Electronics Society, IECON
国/地域台湾
CityTaipei
Period11/5/0711/8/07

!!!All Science Journal Classification (ASJC) codes

  • 制御およびシステム工学
  • 電子工学および電気工学

フィンガープリント

「Recognition of manipulation sequences by human hand based on Support Vector Machine」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル