Real-World Autonomous Driving Control: An Empirical Study Using the Proximal Policy Optimization (PPO) Algorithm

Peng Zhao, Zhongxian Yuan, Kyaw Thu, Takahiko Miyazaki

研究成果: ジャーナルへの寄稿学術誌査読

抄録

This article preprocesses environmental information and use it as input for the Proximal Policy Optimization (PPO) algorithm. The algorithm is directly trained on a model vehicle in a real environment, allowing it to control the distance between the vehicle and surrounding objects. The training converges after approximately 200 episodes, demonstrating the PPO algorithm's ability to tolerate uncertainty, noise, and interference in a real training environment to some extent. Furthermore, tests of the trained model in different scenarios reveal that even when the input information is processed and does not provide a comprehensive view of the environment, the PPO algorithm can still effectively achieve control objectives and accomplish challenging tasks.

本文言語英語
ページ(範囲)887-899
ページ数13
ジャーナルEvergreen
11
2
出版ステータス出版済み - 6月 2024

!!!All Science Journal Classification (ASJC) codes

  • 電子材料、光学材料、および磁性材料
  • セラミックおよび複合材料
  • 表面、皮膜および薄膜
  • マネジメント、モニタリング、政策と法律

フィンガープリント

「Real-World Autonomous Driving Control: An Empirical Study Using the Proximal Policy Optimization (PPO) Algorithm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル