Real-time people counting using blob descriptor

Satoshi Yoshinaga, Atsushi Shimada, Rin Ichiro Taniguchi

研究成果: ジャーナルへの寄稿会議記事査読

30 被引用数 (Scopus)

抄録

We propose a system for counting the number of pedestrians in real-time. This system estimates "how many pedestrians are and where they are in video sequences" by the following procedures. First, candidate regions are segmented into blobs according to background subtraction. Second, a set of features are extracted from each blob and a neural network estimates the number of pedestrians corresponding to each set of features. To realize real-time processing, we used only simple and valid features, and the adaptive background modeling using Parzen density estimation, which realizes fast and accurate object detection in input images. We also validate the effectiveness of the proposed system by several experiments.

本文言語英語
ページ(範囲)143-152
ページ数10
ジャーナルProcedia - Social and Behavioral Sciences
2
1
DOI
出版ステータス出版済み - 2010
イベント1st International Conference on Security Camera Network, Privacy Protection and Community Safety 2009, SPC2009 - Kiryu, 日本
継続期間: 10月 28 200910月 30 2009

!!!All Science Journal Classification (ASJC) codes

  • 社会科学一般
  • 心理学一般

フィンガープリント

「Real-time people counting using blob descriptor」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル