Real-time Classification of Diverse Reaching Motions Using RMS and Discrete Wavelet Transform Energy Values from EMG Signals for Human Assistive Robots

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

With advancing technology, human assistive robots have been developed to enhance daily efficiency for users. Focusing on the reaching motions of the upper limb, this study aims to propose a motion classification method based on electromyographic (EMG) signals that can accurately and promptly differentiate among three distinct types of reaching motion - regular reaching, extended reaching, and weighted reaching - regardless of the motion direction. In the proposed method, the EMG signals of upper limb and torso muscles relevant to these reaching motions are used to identify pivotal features capable of clearly classifying these different reaching motions. A Gated Recurrent Unit (GRU) network is employed to train the model and infer user intentions based on the signal features. The results confirmed the efficiency in motion classification, which laid the foundation for the future application of human assist robots, enabling them to provide users with timely and precise responses.

本文言語英語
ホスト出版物のタイトル46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9798350371499
DOI
出版ステータス出版済み - 2024
イベント46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Orlando, 米国
継続期間: 7月 15 20247月 19 2024

出版物シリーズ

名前Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN(印刷版)1557-170X

会議

会議46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
国/地域米国
CityOrlando
Period7/15/247/19/24

!!!All Science Journal Classification (ASJC) codes

  • 信号処理
  • 生体医工学
  • コンピュータ ビジョンおよびパターン認識
  • 健康情報学

フィンガープリント

「Real-time Classification of Diverse Reaching Motions Using RMS and Discrete Wavelet Transform Energy Values from EMG Signals for Human Assistive Robots」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル