抄録
The thermal stability of a charged graphite electrode was studied quantitatively by differential scanning calorimetry (DSC). Charged electrode powder gave exothermic peaks at around 285 °C, and their heat values were proportional to the amount of charged electrode powder sealed in hermetic pans. These results suggest that a solid electrolyte interphase (SEI) that is formed on graphite during charging would react exothermally with charged graphite at around 285 °C. Mass spectrometry coupled with thermogravimetric analysis and differential thermal analysis (TG-DTA/MS) of the charged electrode powder indicated that the exothermic reactions at around 285 °C should be accompanied by the generation of methane. When charged electrode powders coexisted with electrolyte solution in a hermetic pan, the heat values at around 285 °C varied in an apparently complicated way depending on the ratio of charged electrode powder to an electrolyte. These phenomena are discussed quantitatively by considering the amount of lithium-ions in charged graphite powder and a coexisting electrolyte. These results suggest that the exothermic reactions at around 285 °C can be attributed to the reductive decomposition of SEI by charged graphite.
本文言語 | 英語 |
---|---|
ページ(範囲) | 1380-1385 |
ページ数 | 6 |
ジャーナル | Journal of Power Sources |
巻 | 185 |
号 | 2 |
DOI | |
出版ステータス | 出版済み - 12月 1 2008 |
!!!All Science Journal Classification (ASJC) codes
- 再生可能エネルギー、持続可能性、環境
- エネルギー工学および電力技術
- 物理化学および理論化学
- 電子工学および電気工学