TY - JOUR
T1 - Quantification method for parameters affecting multi-scale roughness-induced fatigue crack closure
AU - Mizoguchi, Tomoki
AU - Koyama, Motomichi
AU - Noguchi, Hiroshi
N1 - Publisher Copyright:
© 2018 The Authors.
PY - 2018
Y1 - 2018
N2 - Our challenge is to clarify the relationship between crack roughness and microstructure. Roughness-induced crack closure (RICC) is known to be one of the main factors decelerating fatigue crack growth. Two factors trigger RICC: 1) nanometer-scale roughness on the crack surface (nano-roughness) and 2) degree of crack deflection (micro-roughness). These factors affect the friction stress acting on the crack planes and the stress intensity factor range for crack closure. For instance, S. Suresh and R. O. Ritchie discussed the effects of geometrical mismatch between fatigue crack planes on crack closure. We further attempt to measure multi-scale crack roughness to quantitatively estimate RICC with respect to both friction and crack closure effects. In this study, we examine the multi-scale crack roughness of a lamellar-structured Fe-9Mn-3Ni-1.4Al-0.01C steel sample as a case study. We verify the effect of crack surface friction. Here, we assume that the basic effect of nano-roughness on friction is significant when the inclination angle of micro-roughness against the loading direction is less than the angle of nano-roughness. If the inclination angle of micro-roughness against the loading direction is larger than the angle of nano-roughness, the nano-roughness effect does not occur because the crack surfaces do no contact with each other. To further discuss the underlying effects of multi-scale roughness, we will present more details on the microstructure- and mechanical condition-related roughness parameters and their quantification techniques.
AB - Our challenge is to clarify the relationship between crack roughness and microstructure. Roughness-induced crack closure (RICC) is known to be one of the main factors decelerating fatigue crack growth. Two factors trigger RICC: 1) nanometer-scale roughness on the crack surface (nano-roughness) and 2) degree of crack deflection (micro-roughness). These factors affect the friction stress acting on the crack planes and the stress intensity factor range for crack closure. For instance, S. Suresh and R. O. Ritchie discussed the effects of geometrical mismatch between fatigue crack planes on crack closure. We further attempt to measure multi-scale crack roughness to quantitatively estimate RICC with respect to both friction and crack closure effects. In this study, we examine the multi-scale crack roughness of a lamellar-structured Fe-9Mn-3Ni-1.4Al-0.01C steel sample as a case study. We verify the effect of crack surface friction. Here, we assume that the basic effect of nano-roughness on friction is significant when the inclination angle of micro-roughness against the loading direction is less than the angle of nano-roughness. If the inclination angle of micro-roughness against the loading direction is larger than the angle of nano-roughness, the nano-roughness effect does not occur because the crack surfaces do no contact with each other. To further discuss the underlying effects of multi-scale roughness, we will present more details on the microstructure- and mechanical condition-related roughness parameters and their quantification techniques.
UR - http://www.scopus.com/inward/record.url?scp=85064661554&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064661554&partnerID=8YFLogxK
U2 - 10.1016/j.prostr.2018.12.225
DO - 10.1016/j.prostr.2018.12.225
M3 - Conference article
AN - SCOPUS:85064661554
SN - 2452-3216
VL - 13
SP - 1071
EP - 1075
JO - Procedia Structural Integrity
JF - Procedia Structural Integrity
T2 - 22nd European Conference on Fracture, ECF 2018
Y2 - 25 August 2018 through 26 August 2018
ER -