QR Factorization of Block Low-Rank Matrices on Multi-instance GPU

Satoshi Ohshima, Akihiro Ida, Rio Yokota, Ichitaro Yamazaki

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

The QR factorization, which is a fundamental operation in linear algebra, is used extensively in scientific simulations. The acceleration and memory reduction of it are important research targets. QR factorization using block low-rank matrices (BLR-QR) has previously been proposed to address this issue. In this study, we consider its implementation on a GPU. Current CPUs and GPUs have numerous computational cores and the performance consists of the total performance of them. Therefore, the degree of parallelism of the target calculation is important for obtaining high performance. By contrast, many applications, including BLR-QR, do not have sufficient parallelism. Batched computation has attracted attention for achieving high performance in such calculations. However, the use of it requires major code rewriting and is extremely laborious. Thus, we propose the use of the multi-instance GPU (MIG) feature of current GPUs. Using MIG, we succeeded in obtaining a 53.3% time reduction over the CPU and 77.6% over the GPU without MIG. From the above result, we succeeded in demonstrating rapid implementation of BLR-QR on MIG and usefulness of MIG.

本文言語英語
ホスト出版物のタイトルParallel and Distributed Computing, Applications and Technologies - 23rd International Conference, PDCAT 2022, Proceedings
編集者Hiroyuki Takizawa, Hong Shen, Toshihiro Hanawa, Jong Hyuk Park, Hui Tian, Ryusuke Egawa
出版社Springer Science and Business Media Deutschland GmbH
ページ359-369
ページ数11
ISBN(印刷版)9783031299261
DOI
出版ステータス出版済み - 2023
外部発表はい
イベント23rd International Conference on Parallel and Distributed Computing, Applications, and Technologies, PDCAT 2022 - Sendai, 日本
継続期間: 12月 7 202212月 9 2022

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
13798 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

会議

会議23rd International Conference on Parallel and Distributed Computing, Applications, and Technologies, PDCAT 2022
国/地域日本
CitySendai
Period12/7/2212/9/22

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータサイエンス一般

フィンガープリント

「QR Factorization of Block Low-Rank Matrices on Multi-instance GPU」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル