TY - JOUR
T1 - Prolactin-releasing peptide is a potent mediator of stress responses in the brain through the hypothalamic paraventricular nucleus
AU - Mera, T.
AU - Fujihara, H.
AU - Kawasaki, M.
AU - Hashimoto, H.
AU - Saito, T.
AU - Shibata, M.
AU - Saito, J.
AU - Oka, T.
AU - Tsuji, S.
AU - Onaka, T.
AU - Ueta, Y.
PY - 2006/7/21
Y1 - 2006/7/21
N2 - The effects of i.c.v. administration of prolactin-releasing peptide on neurons in the paraventricular nucleus of rats and plasma corticosterone levels were examined by measuring changes in Fos-like immunoreactivity, c-fos mRNA using in situ hybridization histochemistry, and plasma corticosterone using a specific radioimmunoassay. Approximately 80% of corticotropin-releasing hormone immunoreactive cells exhibited Fos-like immunoreactivity in the parvocellular division of the paraventricular nucleus 90 min after i.c.v. administration of prolactin-releasing peptide. The greatest induction of the c-fos mRNA expression in the paraventricular nucleus was observed 30 min after administration of prolactin-releasing peptide, and occurred in a dose-related manner. Plasma corticosterone levels were also significantly increased 30 min after administration of prolactin-releasing peptide. Next, the effects of restraint stress, nociceptive stimulus and acute inflammatory stress on the expression of the prolactin-releasing peptide mRNA in the dorsomedial hypothalamic nucleus, nucleus of the solitary tract and ventrolateral medulla were examined using in situ hybridization histochemistry for prolactin-releasing peptide mRNA. Restraint stress and acute inflammatory stress upregulated the prolactin-releasing peptide mRNA expression in the nucleus of the solitary tract and ventrolateral medulla. Nociceptive stimulus upregulated the prolactin-releasing peptide mRNA expression in the ventrolateral medulla. Finally, we observed that pretreatment (i.c.v. administration) with an anti-prolactin-releasing peptide antibody significantly attenuated nociceptive stimulus-induced c-fos mRNA expression in the paraventricular nucleus. These results suggest that prolactin-releasing peptide is a potent and important mediator of the stress response in the brain through the hypothalamic paraventricular nucleus.
AB - The effects of i.c.v. administration of prolactin-releasing peptide on neurons in the paraventricular nucleus of rats and plasma corticosterone levels were examined by measuring changes in Fos-like immunoreactivity, c-fos mRNA using in situ hybridization histochemistry, and plasma corticosterone using a specific radioimmunoassay. Approximately 80% of corticotropin-releasing hormone immunoreactive cells exhibited Fos-like immunoreactivity in the parvocellular division of the paraventricular nucleus 90 min after i.c.v. administration of prolactin-releasing peptide. The greatest induction of the c-fos mRNA expression in the paraventricular nucleus was observed 30 min after administration of prolactin-releasing peptide, and occurred in a dose-related manner. Plasma corticosterone levels were also significantly increased 30 min after administration of prolactin-releasing peptide. Next, the effects of restraint stress, nociceptive stimulus and acute inflammatory stress on the expression of the prolactin-releasing peptide mRNA in the dorsomedial hypothalamic nucleus, nucleus of the solitary tract and ventrolateral medulla were examined using in situ hybridization histochemistry for prolactin-releasing peptide mRNA. Restraint stress and acute inflammatory stress upregulated the prolactin-releasing peptide mRNA expression in the nucleus of the solitary tract and ventrolateral medulla. Nociceptive stimulus upregulated the prolactin-releasing peptide mRNA expression in the ventrolateral medulla. Finally, we observed that pretreatment (i.c.v. administration) with an anti-prolactin-releasing peptide antibody significantly attenuated nociceptive stimulus-induced c-fos mRNA expression in the paraventricular nucleus. These results suggest that prolactin-releasing peptide is a potent and important mediator of the stress response in the brain through the hypothalamic paraventricular nucleus.
UR - http://www.scopus.com/inward/record.url?scp=33745979166&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33745979166&partnerID=8YFLogxK
U2 - 10.1016/j.neuroscience.2006.04.023
DO - 10.1016/j.neuroscience.2006.04.023
M3 - Article
C2 - 16730416
AN - SCOPUS:33745979166
SN - 0306-4522
VL - 141
SP - 1069
EP - 1086
JO - Neuroscience
JF - Neuroscience
IS - 2
ER -