Private simultaneous messages based on quadratic residues

Kazumasa Shinagawa, Reo Eriguchi, Shohei Satake, Koji Nuida

研究成果: ジャーナルへの寄稿学術誌査読

抄録

Private Simultaneous Messages (PSM) model is a minimal model for secure multiparty computation. Feige, Kilian, and Naor (STOC 1994) and Ishai (Cryptology and Information Security Series 2013) constructed PSM protocols based on quadratic residues. In this paper, we define QR-PSM protocols as a generalization of these protocols. A QR-PSM protocol is a PSM protocol whose decoding function outputs the quadratic residuosity modulo p of what is computed from messages. We design a QR-PSM protocol for any symmetric function f: { 0 , 1 } n→ { 0 , 1 } of communication complexity O(n2) . As far as we know, it is the most efficient PSM protocol for symmetric functions since the previously known best PSM protocol was of O(n2log n) (Beimel et al., CRYPTO 2014). We also study the sizes of the underlying finite fields Fp in the protocols since the communication complexity of a QR-PSM protocol is proportional to the bit length of the prime p. We show that there is a prime p≤ (1 + o(1)) N22 2N-2 such that any length-N pattern of quadratic (non)residues appears modulo p (and hence it can be used for general QR-PSM protocols), which improves the Peralta’s known result (Mathematics of Computation 1992) by a constant factor (1+2)2 .

本文言語英語
ページ(範囲)3915-3932
ページ数18
ジャーナルDesigns, Codes, and Cryptography
91
12
DOI
出版ステータス出版済み - 12月 2023

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンスの応用
  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「Private simultaneous messages based on quadratic residues」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル