TY - JOUR
T1 - Prediction of human pharmacokinetics profile of monoclonal antibody using hFcRn transgenic mouse model
AU - Nakamura, Genki
AU - Ozeki, Kazuhisa
AU - Takesue, Hiroaki
AU - Tabo, Mitsuyasu
AU - Hosoya, Ken Ichi
N1 - Publisher Copyright:
© 2021 The Pharmaceutical Society of Japan
PY - 2021/3/1
Y1 - 2021/3/1
N2 - Human pharmacokinetics (PK) profiles of monoclonal antibodies (mAbs) are usually predicted using non-human primates (NHP), but this comes with drawbacks in terms of cost and throughput. Therefore, we established a human PK profile prediction method using human neonatal Fc receptor (hFcRn) transgenic mice (TgM). We administered launched 13 mAbs to hFcRn TgM and measured the concentration in plasma using electro-chemiluminescence immunoassay. This was then used to calculate PK parameters and predict human PK profiles. The mAbs showed a bi-phased elimination pattern, and clearance (CL) (mL/d/kg) and distribution volume at steady state (Vdss) (mL/kg) ranges were 11.0 to 131 and 110 to 285, respectively. There was a correlation in half-life at elimination phase (t1/2β) between hFcRn TgM and humans for 10 mAbs showing CL of more than 80% in the elimination phase (R2=0.714). Human t1/2β was predicted using hFcRn TgM t1/2β; 9 out of 10 mAbs were within 2-fold the actual values, and all mAbs were within 3-fold. Regarding the predicted CL values, 7 out of 10 mAbs were within 2-fold the human values and all mAbs were within 3-fold. Furthermore, even on day 7 the predicted CL values of 8 out of 10 mAbs were within 2-fold the observed value, with all mAbs within 3-fold. These results suggest human PK profiles can be predicted using hFcRn TgM data. These methods can accelerate the development of antibody drugs while also reducing cost and improving throughput.
AB - Human pharmacokinetics (PK) profiles of monoclonal antibodies (mAbs) are usually predicted using non-human primates (NHP), but this comes with drawbacks in terms of cost and throughput. Therefore, we established a human PK profile prediction method using human neonatal Fc receptor (hFcRn) transgenic mice (TgM). We administered launched 13 mAbs to hFcRn TgM and measured the concentration in plasma using electro-chemiluminescence immunoassay. This was then used to calculate PK parameters and predict human PK profiles. The mAbs showed a bi-phased elimination pattern, and clearance (CL) (mL/d/kg) and distribution volume at steady state (Vdss) (mL/kg) ranges were 11.0 to 131 and 110 to 285, respectively. There was a correlation in half-life at elimination phase (t1/2β) between hFcRn TgM and humans for 10 mAbs showing CL of more than 80% in the elimination phase (R2=0.714). Human t1/2β was predicted using hFcRn TgM t1/2β; 9 out of 10 mAbs were within 2-fold the actual values, and all mAbs were within 3-fold. Regarding the predicted CL values, 7 out of 10 mAbs were within 2-fold the human values and all mAbs were within 3-fold. Furthermore, even on day 7 the predicted CL values of 8 out of 10 mAbs were within 2-fold the observed value, with all mAbs within 3-fold. These results suggest human PK profiles can be predicted using hFcRn TgM data. These methods can accelerate the development of antibody drugs while also reducing cost and improving throughput.
UR - http://www.scopus.com/inward/record.url?scp=85101805553&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101805553&partnerID=8YFLogxK
U2 - 10.1248/bpb.b20-00783
DO - 10.1248/bpb.b20-00783
M3 - Article
C2 - 33642546
AN - SCOPUS:85101805553
SN - 0918-6158
VL - 44
SP - 389
EP - 395
JO - Biological and Pharmaceutical Bulletin
JF - Biological and Pharmaceutical Bulletin
IS - 3
ER -