Predicting the generalization of computer aided detection (CADe) models for colonoscopy

Joel Shor, Carson McNeil, Yotam Intrator, Joseph R. Ledsam, Hir O.O. Yamano, Daisuke Tsurumaru, Hiroki Kayama, Atsushi Hamabe, Koji Ando, Mitsuhiko Ota, Haruei Ogino, Hiroshi Nakase, Kaho Kobayashi, Masaaki Miyo, Eiji Oki, Ichiro Takemasa, Ehud Rivlin, Roman Goldenberg

研究成果: ジャーナルへの寄稿学術誌査読

抄録

Generalizability of AI colonoscopy algorithms is important for wider adoption in clinical practice. However, current techniques for evaluating performance on unseen data require expensive and time-intensive labels. We show that a "Masked Siamese Network" (MSN), trained to predict masked out regions of polyp images without labels, can predict the performance of Computer Aided Detection (CADe) of polyps on colonoscopies, without labels. This holds on Japanese colonoscopies even when MSN is only trained on Israeli colonoscopies, which differ in scoping hardware, endoscope software, screening guidelines, bowel preparation, patient demographics, and the use of techniques such as narrow-band imaging (NBI) and chromoendoscopy (CE). Since our technique uses neither colonoscopy-specific information nor labels, it has the potential to apply to more medical imaging domains.

本文言語英語
論文番号85
ジャーナルDiscover Artificial Intelligence
4
1
DOI
出版ステータス出版済み - 12月 2024

!!!All Science Journal Classification (ASJC) codes

  • 人工知能
  • 人間とコンピュータの相互作用
  • 情報システム
  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Predicting the generalization of computer aided detection (CADe) models for colonoscopy」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル