Predicting glaucoma progression using multi-task learning with heterogeneous features

Shigeru Maya, Kai Morino, Kenji Yamanishi

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

8 被引用数 (Scopus)

抄録

We consider the prediction of glaucomatous visual field loss based on patient datasets. It is critically important to predict how rapidly the disease is progressing in an individual patient. However, the number of measurements for each patient is so small that a reliable predictor cannot be constructed from the data of a single patient alone. In this paper, we propose a novel multi-task learning approach to this issue. Patient data consist of three features: patient ID, 74-dimensional visual loss values, and inspection time. We reduce the prediction problem into one of matrix completion for these features. Specifically, by assuming heterogeneity in the three features, we introduce similarity measures that reflect the unique statistical nature of the respective features to solve a specific type of matrix decomposition problem. For example, we employ Gaussian kernels as a similarity measure for visual field loss and a linear regression-type relation for the time feature. We empirically demonstrate that our proposed method works significantly better than the existing methods.

本文言語英語
ホスト出版物のタイトルProceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014
編集者Wo Chang, Jun Huan, Nick Cercone, Saumyadipta Pyne, Vasant Honavar, Jimmy Lin, Xiaohua Tony Hu, Charu Aggarwal, Bamshad Mobasher, Jian Pei, Raghunath Nambiar
出版社Institute of Electrical and Electronics Engineers Inc.
ページ261-270
ページ数10
ISBN(電子版)9781479956654
DOI
出版ステータス出版済み - 1月 7 2015
外部発表はい
イベント2nd IEEE International Conference on Big Data, IEEE Big Data 2014 - Washington, 米国
継続期間: 10月 27 201410月 30 2014

出版物シリーズ

名前Proceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014

その他

その他2nd IEEE International Conference on Big Data, IEEE Big Data 2014
国/地域米国
CityWashington
Period10/27/1410/30/14

!!!All Science Journal Classification (ASJC) codes

  • 人工知能
  • 情報システム

フィンガープリント

「Predicting glaucoma progression using multi-task learning with heterogeneous features」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル