Practical formula of the shape evolution of a surface crack under fatigue loading

Yosuke Anai, Toshio Niwa, Koji Gotoh

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

5 被引用数 (Scopus)

抄録

Fatigue life estimation for planar cracks, e.g. part-through surface cracks or embedded cracks is very important because most of fatigue cracks found in welded built-up structures show planar crack morphologies. Although authors had proposed the estimation procedure of crack shape evolution for a planar crack based on the fracture mechanics approach, this method cannot apply if the values of stress intensity factor at the vertices of the surface crack approximated as an ellipse cannot calculated. Then, development of the shape evolution procedure of a planer crack under the stress field with arbitrary gradient, because fatigue cracks in welded built-up structures exist near the stress concentrated region. A Practical estimation formula the shape evolution of a surface crack under stress field with the gradient is proposed in this study. This formula is established by considering the stress field under no crack condition and some former proposed formulae under uniform and pure bending stress fields. The validity of the proposed formula are confirmed by comparing some measured surface crack shape evolutions under some stress gradient conditions.

本文言語英語
ホスト出版物のタイトルMaterials Technology
出版社American Society of Mechanical Engineers (ASME)
ISBN(電子版)9780791856505
DOI
出版ステータス出版済み - 2015
イベントASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2015 - St. John's, カナダ
継続期間: 5月 31 20156月 5 2015

出版物シリーズ

名前Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
4

その他

その他ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2015
国/地域カナダ
CitySt. John's
Period5/31/156/5/15

!!!All Science Journal Classification (ASJC) codes

  • 海洋工学
  • エネルギー工学および電力技術
  • 機械工学

フィンガープリント

「Practical formula of the shape evolution of a surface crack under fatigue loading」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル