Poisson Counts, Square Root Transformation and Small Area Estimation: Square Root Transformation

Malay Ghosh, Tamal Ghosh, Masayo Y. Hirose

研究成果: ジャーナルへの寄稿学術誌査読

3 被引用数 (Scopus)

抄録

The paper intends to serve two objectives. First, it revisits the celebrated Fay-Herriot model, but with homoscedastic known error variance. The motivation comes from an analysis of count data, in the present case, COVID-19 fatality for all counties in Florida. The Poisson model seems appropriate here, as is typical for rare events. An empirical Bayes (EB) approach is taken for estimation. However, unlike the conventional conjugate gamma or the log-normal prior for the Poisson mean, here we make a square root transformation of the original Poisson data, along with square root transformation of the corresponding mean. Proper back transformation is used to infer about the original Poisson means. The square root transformation makes the normal approximation of the transformed data more justifiable with added homoscedasticity. We obtain exact analytical formulas for the bias and mean squared error of the proposed EB estimators. In addition to illustrating our method with the COVID-19 example, we also evaluate performance of our procedure with simulated data as well.

本文言語英語
ページ(範囲)449-471
ページ数23
ジャーナルSankhya B
84
2
DOI
出版ステータス出版済み - 11月 2022

!!!All Science Journal Classification (ASJC) codes

  • 統計学および確率
  • 統計学、確率および不確実性
  • 応用数学

フィンガープリント

「Poisson Counts, Square Root Transformation and Small Area Estimation: Square Root Transformation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル