Physics of energetic ions

J. Jacquinot, S. Putvinski, G. Bosia, A. Fukuyama, R. Hemsworth, S. Konovalov, Y. Nagashima, W. M. Nevins, K. Rasumova, F. Romanelli, K. Tobita, K. Ushigusa, J. W. Van Dam, V. Vdovin, H. L. Berk, D. Borba, B. N. Breizman, R. Budny, J. Candy, C. Z. ChengC. Challis, A. Fasoli, G. Y. Fu, W. Heidbrink, R. Nazikian, G. Martin, F. Porcelli, M. Redi, M. N. Rosenbluth, G. Sadler, S. E. Sharapov, D. A. Spong, R. White, F. Zonca, F. W. Perkins, D. E. Post, N. A. Uckan, M. Azumi, D. J. Campbell, N. Ivanov, N. R. Sauthoff, M. Wakatani, W. M. Nevins, M. Shimada, J. Van Dam

研究成果: ジャーナルへの寄稿学術誌査読

127 被引用数 (Scopus)


Physics knowledge (theory and experiment) in energetic particles relevant to design of a reactor scale tokamak is reviewed, and projections for ITER are provided in this Chapter of the ITER Physics Basis. The review includes single particle effects such as classical alpha particle heating and toroidal field ripple loss, as well as collective instabilities that might be generated in ITER plasmas by energetic alpha particles. The overall conclusion is that fusion alpha particles are expected to provide an efficient plasma heating for ignition and sustained burn in the next step device. The major concern is localized heat loads on the plasma facing components produced by alpha particle loss, which might affect their lifetime in a tokamak reactor.

ジャーナルNuclear Fusion
出版ステータス出版済み - 12月 1999

!!!All Science Journal Classification (ASJC) codes

  • 核物理学および高エネルギー物理学
  • 凝縮系物理学


「Physics of energetic ions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。