抄録
Dry reforming of methane is one of the key reactions to exploit natural gas feedstocks by their catalytic conversion to synthesis gas (CH4 + CO2 → 2H2 + 2CO), which is used in the production of transportable liquid fuel. However, this reaction suffers from thermodynamic conversion limits and high thermal energy requirements. Herein we report that a SrTiO3-supported rhodium (Rh/STO) catalyst efficiently promotes methane reforming under ultraviolet light irradiation without heat supply at low temperatures, which cannot be achieved by conventional thermal catalysis. The photoexcited holes and electrons are used for CH4 oxidation over STO and CO2 reduction over rhodium, respectively. Isotope analysis clarified that the lattice oxygens (O2−) act as mediator to drive dry reforming of methane. The materials design of Rh/STO can be extended in principle to diverse uphill reactions that utilize photon energy to obtain valued products from different carbon resources.
本文言語 | 英語 |
---|---|
ページ(範囲) | 148-153 |
ページ数 | 6 |
ジャーナル | Nature Catalysis |
巻 | 3 |
号 | 2 |
DOI | |
出版ステータス | 出版済み - 2月 1 2020 |
!!!All Science Journal Classification (ASJC) codes
- 触媒
- バイオエンジニアリング
- 生化学
- プロセス化学およびプロセス工学